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Resonant production of secondary electrons generating a discrete energy structure
in a magnetized electron beam system
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In a system of magnetized electron beams, multiplication of electrons can occur if the incident and return
beams~the latter one is produced by secondary electrons emitted at the end of the incident beam! satisfy a
resonance condition on the gyration phase. The beams propagate between two boundaries; one is an electron
gun and the other is a Faraday cup detector. The resonance condition demands discrete energies~eigenvalues!
of the Hamiltonian that generates a propagator of the beam. This model has been compared with Varma’s
formulation of discrete energies@R. K. Varma and A. M. Punithavelu, Mod. Phys. Lett. A8, 167 ~1993!#.
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I. INTRODUCTION

Varma and Punithavelu@1# have shown that a surprisingl
complex phenomenon can occur in a simple system of
electron beam propagating along a longitudinal magn
field. Although the energy of the beam is in a tota
classical-mechanical regime, the transport of electrons ex
its an unexpected discrete structure that resembles
quantum-mechanical conduction bands.

This problem was originally addressed by Varma@2#. He
pointed out the similarity between the classical elect
transport equation, after manipulation based on the recip
the path-integral method@3#, and the Schro¨dinger equation of
matter waves. He predicted a band structure in a class
mechanical electron beam in a magnetic field. However,
essential part of the model has not been explained w
physical justification. A discrete spectrum stems from
Schrödinger-type formulation together with an appropria
‘‘boundary condition’’ that must be imposed under a phy
cal requirement. Formally, the Schro¨dinger operator may
have a discrete spectrum when the boundary condition
to trap the wave function in a bounded region. To explain
experiments, we need a periodic boundary condition for
wave function, or a ‘‘propagator,’’ that represents the tra
port of the electrons.

In this paper, we present a model of the ‘‘resonance c
dition’’ for electron multiplication due to secondary-electro
emission at the boundary, which implies the desired bou
ary condition. The model gives a physical justification f
the Schro¨dinger-type formulation and the corresponding d
crete spectrum.

In Sec. II, we describe a concise summary of our exp
ment. There are some differences from the Varm
Punthavelu experiment. The model of secondary electr
generating a return beam is proposed in Sec. III. In Sec.
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we present formulas describing the discrete energies b
on the secondary electron model, and compare it with V
ma’s theory.

II. ELECTRON BEAM EXPERIMENT

We begin with a review of the electron beam system t
was first studied by Varma@2# and then explored experimen
tally @1#. We consider a very simple system consisting of
electron gun, a Faraday cup, and solenoidal coils that pro
a longitudinal magnetic field. The electron gun consists o
filament, a cathode plate, and an anode plate. Each plate
a hole 2 mm in diameter. The Faraday cup~140 mm in
diameter! consists of a collector plate, a repeller grid, and
shield grid. The transparency of each grid, is 49.7%. T
background pressure is about 131027 Torr, and hence the
scattering of electrons by residual gas particles is negligi
Figure 1 shows the electric potential field applied to the el
trons in this system. The electrons move with a const
velocity between the anode plate and the shield grid. Ther
a minor difference from the Varma-Punithavelu experime
@1#. In their system, the Faraday cup does not have a sh
grid, and hence the potential given at the repeller grid

FIG. 1. Schematics of the experimental device and poten
energy due to the external electric fields.
©2001 The American Physical Society02-1
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tends further. In the later discussion, however, this differe
does not play an essential role.

When the magnetic fieldB50 ~see Fig. 2!, for a repeller
potential (F) smaller than the acceleration voltage (V), all
electrons reach the collector, while forF.V, all electrons
must be reflected at the repeller. A slight complication, ho
ever, appears because of the finite transparency of the
trode grids of the detector; the peak nearF50 is due to
secondary electrons emitted from the shield, which are o
retarded by a small potential. WhenBÞ0, on the other hand
very different results are obtained~see Fig. 3!. We observed
a number of peaks in the collector current. This result
similar to the previous experiment of Varma-Punithavelu@1#,
however there are some fundamental differences.

In our experiment, the wavy graphs such as in Fig. 3~let
us call this ‘‘quantization’’! are obtained only for discret
magnetic fieldsBl 5l B1 (l 51,2,3, . . . ); B1 is the mini-
mum magnetic field for which the wavy structure appea
The value ofB1 depends ond ~the distance between the gu
and the detector! andV ~acceleration voltage!. In Fig. 4, we

FIG. 2. Collector current as a function of retarding potenti
E5500 eV,d524 cm, andBi50 G.

FIG. 3. Collector current as a function of retarding potenti
E5500 eV,d524 cm, andBi599.0 G.
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plot B1 as a function ofd (V is fixed!, and in Fig. 5, as a
function of V (d is fixed!. We find that the condition for the
‘‘quantization’’ is summarized as

vcd

ve
52pl ~ l 51,2,3, . . . !, ~1!

where vc5eB/me is the cyclotron frequency andve
5(2eV/me)

1/2 is the velocity of the electrons~nonrelativistic
in the present energy range:E<1.5 keV!; see Table I. The
left-hand side of Eq.~1! represents the gyration phase of t
electron, and hence the condition~1! implies that the elec-
trons must complete an integer number of gyrations~cyclo-
tron motion! around the magnetic-field line during the
travel between the gun and the Faraday cup. We can rew
Eq. ~1! in the form

eV5
1

2
meS vcd

2p D 2 1

l 2
~ l 51,2,3, . . . !. ~2!

.

.

FIG. 4. Minimum magnetic fieldB1 at which peaks appear as
function of distanced (V5600 V!. The solid line is theB}d21

curve.

FIG. 5. Minimum magnetic fieldB1 at which peaks appear as
function of acceleration voltageV (d524 cm!. The solid line is the
B}V1/2 curve.
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When quantization occurs, another discrete-number
applies to the retarding potentialF; the current peaks appea
if

eF5
1

2
meS vcd

2p D 2 1

n2
~n5l ,l 11,l 12, . . . !. ~3!

In Fig. 3, the ‘‘quantum numbers’’n of the peaks are
5,6,7, . . . . However, the difference between the measu
ment and the relation~3! becomes larger~up to 10%! for
smaller voltages (F,100 V!. We note that the peaks i
Varma’s experiment@1# satisfy the relation

eF5
1

2
meS 3vcd

2p D 2 1

n2
~4!

rather than Eq.~3!. The equivalence of Eqs.~3! and~2! sug-
gests that the ‘‘quantization’’ is related to the gyration pha
of electrons. In the following section, we will explain th
phenomenon by a simple model.

III. RETURN BEAM GENERATED BY SECONDARY
ELECTRONS

Secondary electrons play an essential role in the pre
model. When beam electrons bombard the repeller grid
the Faraday cup, secondary electrons are produced. T
electrons are accelerated by the retarding potentialF and go
back to the gun. Neglecting the initial energy of second
electrons, we obtain a ‘‘return beam’’ of energyeF. Each
electron gyrates with Larmor radiusr L5mev' /eB , where
v' is the velocity perpendicular to the magnetic field. F
incident beam electrons,v' is generated by the emittance
the beam generated at the cathode. But for return beam
trons,v' is determined by the initial velocity of seconda

TABLE I. Comparison of experiment with relation~2! for mag-
netic fields at which peaks appear.E5500 eV andd524 cm.

l Bl @G#

Experiment Relation~2!

1 19.6 19.7
3 59.0 59.1
5 99.0 98.6
7 136 138
02650
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electrons emitted in a random direction. The return be
focuses at every 2p of the gyration phase, if the return bea
is generated at a concentrated place on the grid, i.e.,
incident beam focuses on the grid@Fig. 6~a!#. This condition
on the incident beam is described by Eq.~2!. Under this
condition, the return beam can focus on the front of the el
tron gun when the relation~3! holds@Fig. 6~b!#. Then, almost
all of the return beam electrons can enter the hole of
electron gun and be reflected by the acceleration poten
@Fig. 6~c!#. The Faraday cup detects the total number of el
trons that pass through the two grids. We thus see that
electrons are multiplied by the incident and return bea
when the ‘‘resonance conditions’’~2! and~3! on the gyration
phase are satisfied.

Using this model, we made a computer simulation of t
collector current with changing retarding potential. Here,
assume that the probability that electrons pass through
grid is 1

2 and the energy of secondary electronsE0 is 5 eV.
The perpendicular energy of incident beam electronsE' is
set to 3 eV. We assume that all secondary electrons em
from the repeller are accelerated toward the gun, and a
those that enter the hole of the anode are again reflected
have enough energy to cross both grids becauseeF1E0
.eF. The secondary electron yieldd is set to 3 in the simu-
lation. The result of the simulation shown in Fig. 7 repr
duces the quantization of the collector current. However,
simulation with a reasonable secondary electron yield gi
only small and narrow peaks, while in the experiment mo
drastic changes were observed. This may be resolved
studying the secondary emission process more carefully

IV. DISCRETE STRUCTURE IN THE ENERGY OF
ELECTRONS

In this section, we introduce a propagator that represe
the transport of the electrons, which is the eigenfunction o
formal Schro¨dinger operator, and then we incorporate t
‘‘resonance condition’’ of Sec. III into the model as
‘‘boundary condition’’ for the propagator. We will show tha
the eigenvalues of the Hamiltonian give the energy at wh
electron multiplication occurs. The general idea of descr
ing discrete energies by an eigenvalue problem is simila
Varma’s original theory@2#. However, the physical argumen
of introducing the wave function~propagator! and the result
of the eigenvalue problem is different.

We formulate the eigenvalue problem by involving th
Hamilton-Jacobi equation for the action integral. We co
FIG. 6. Schematics of electron orbits of~a! an
incident beam,~b! a return beam, and~c! a re-
flected return beam.
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sider a unitary transform~propagator! C associated with the
action integral.C is different from the wave functionw such
that f 5ww* satisfies the classical Liouville equation~Var-
ma’s formulation @2#!. The classical Hamiltonian of a
charged particle in a homogeneous magnetic field is

H5
1

2m
p21mvc , ~5!

wherep5mv is the momentum in the direction parallel
the magnetic field, andm5 1

2 mv'
2 /vc is the magnetic mo-

ment ~adiabatic invariant!. The mvc can be regarded as
potential energy. We define

C5eiS/m, ~6!

whereS5* L dt is an action integral for the adiabatic La
grangianL5(1/2m)p22mvc @2#. Sincev and vc are con-
stant, Eq.~6! becomes

C~ t !5expF i S 1

m

p2

2m
t2vct D G . ~7!

For S evaluated through the actual motion, we can rew
Eq. ~7!, usingt5z/v, as

C~z,t !5expF i S 1

m

p2

2m
t2

vc

v
zD G . ~8!

In Eq. ~8!, the resonance condition for the gyration pha
~see Sec. III! translates into the periodic boundary conditi
on C(z,t) over the distanced between the gun and the de
tector, i.e.,

C~0,t !5C~d,t !, ~9!

which demands

vcd

v
52pl ~ l 51,2,3, . . . !. ~10!

FIG. 7. Collector current as a function of retarding potent
~computer simulation!. E5500 eV, d524 cm, andBi599.0 G.
Total number of electrons is 3000.
02650
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The time-dependent part ofC in the form of Eq.~8! gives
the eigenvalues of the parallel kinetic energy:

2 im
]C

]t
5EC5

p2

2m
C. ~11!

Substituting Eq.~10! into Eq. ~11!, we can get the discrete
energy eigenvalues

E5
1

2
mS vcd

2p D 2 1

l 2
~ l 51,2,3, . . . !. ~12!

These eigenvalues correspond to the experimental resul
quantization~2! and ~3!. The present classical mechanic
system is described by the propagator with finitem
(5 1

2 mv'
2 /vc), which parallels\. The Larmor radiusr L

(5v' /vc) is comparable to the size of the hole on the a
ode, and hence the finiteness ofm is essential to determine
the discrete beam energy.

In Varma’s formulation@2#, the discrete energies~12! are
derived by taking the variation ofm for the periodic bound-
ary condition, which includes unknownm. These energies
however, conflict the eigenvalues of the Hamiltonian ope
tor given in his theory. The present theory does not ne
such a treatment for the boundary condition and does
include contradictions in estimates of energies.

V. DISCUSSION

The discrete energy structure in the electron beam sys
is explained by the resonance condition that gives rise
electron multiplication through secondary electron emiss
at the electrode. The resonance condition on the gyra
phase can be formulated as a periodic boundary condition
the formal propagator, and the corresponding eigenvalu
the energy gives the discrete energy at which electron m
tiplication occurs. There are several differences, in both
perimental observation and theoretical formulation, fro
Varma’s original work. The present theory and experime
fill gaps and correct flaws left after this pioneering wor
However, there are still some unresolved problems that
quire careful study:~i! The difference between the measur
ment~Fig. 3! and the relation~3! becomes larger~up to 10%!
for smaller voltages (F,100 V!; ~ii ! the simulation~Fig. 7!,
with a reasonable secondary electron yield, gives only sm
and narrow peaks, while in the experiment more dras
changes were observed. These questions may be resolve
studying the secondary emission process more carefully
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