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Resonant production of secondary electrons generating a discrete energy structure
in @ magnetized electron beam system
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In a system of magnetized electron beams, multiplication of electrons can occur if the incident and return
beams(the latter one is produced by secondary electrons emitted at the end of the incidentshéafy a
resonance condition on the gyration phase. The beams propagate between two boundaries; one is an electron
gun and the other is a Faraday cup detector. The resonance condition demands discrete(eigenyedues
of the Hamiltonian that generates a propagator of the beam. This model has been compared with Varma’s
formulation of discrete energig®. K. Varma and A. M. Punithavelu, Mod. Phys. Lett.8A167 (1993].

DOI: 10.1103/PhysReVE.63.026502 PACS nuntherd1.85.Ja, 41.75.Fr, 84.47w

[. INTRODUCTION we present formulas describing the discrete energies based
on the secondary electron model, and compare it with Var-
Varma and Punithavelil] have shown that a surprisingly ma’s theory.
complex phenomenon can occur in a simple system of an
electron beam propagating along a longitudinal magnetic
field. Although the energy of the beam is in a totally
classical-mechanical regime, the transport of electrons exhib- We begin with a review of the electron beam system that
its an unexpected discrete structure that resembles theas first studied by Varmig2] and then explored experimen-
guantum-mechanical conduction bands. tally [1]. We consider a very simple system consisting of an
This problem was originally addressed by Varf@a He  electron gun, a Faraday cup, and solenoidal coils that provide
pointed out the similarity between the classical electrong longitudinal magnetic field. The electron gun consists of a
transport equation, after manipulation based on the recipe dlament, a cathode plate, and an anode plate. Each plate has
the path-integral methd@], and the Schidinger equation of @ hole 2 mm in diameter. The Faraday c(pt0 mm in
matter waves. He predicted a band structure in a classicafli2metey consists of a collector plate, a repeller grid, and a
mechanical electron beam in a magnetic field. However, agield grid. The transparency of each grid, is 49.7%. The

; ~7
essential part of the model has not been explained witfpackground pressure is aboux10™" Torr, and hence the

physical justification. A discrete spectrum stems from thescattering of electrons by residual gas particles is negligible.

o ] : . ._._Figure 1 shows the electric potential field applied to the elec-
Schralinger-type formulation together with an approprlat_etrons in this system. The electrons move with a constant

blounda_ry condt|t|c|):n thalic mltJhSt bSe__Eposed undetr a IOhySI'velocity between the anode plate and the shield grid. There is
cal requirement. Formally, the Scliiager operator May - 5 mingy gifference from the Varma-Punithavelu experiment

have a discrete specFrum when the bouqdary conditiqn acﬁ]_ In their system, the Faraday cup does not have a shield
to trap the wave function in a bounded region. To explain thegrid, and hence the potential given at the repeller grid ex-
experiments, we need a periodic boundary condition for the

wave function, or a “propagator,” that represents the trans-_
port of the electrons. Filam
In this paper, we present a model of the “resonance con-é

IIl. ELECTRON BEAM EXPERIMENT
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dition” for electron multiplication due to secondary-electron | 4

emission at the boundary, which implies the desired bound:
ary condition. The model gives a physical justification for
the Schrdinger-type formulation and the corresponding dis-

crete spectrum. =
In Sec. I, we describe a concise summary of our experi- , R g P . II <I):
ment. There are some differences from the Varma- - etarding Potential ¢
Punthavelu experiment. The model of secondary electron: E Acceleration Voltage V "
generating a return beam is proposed in Sec. lll. In Sec. IV, : 5
I d I
*Electronic address: ito@plasma.q.t.u-tokyo.ac.jp FIG. 1. Schematics of the experimental device and potential
TElectronic address: yoshida@k.u-tokyo.ac.jp energy due to the external electric fields.
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FIG. 4. Minimum magnetic field, at which peaks appear as a
FIG. 2. Collector current as a function of retarding potential. function of distanced (V=600 V). The solid line is theBocd™?
E=500 eV,d=24 cm, andB|=0 G. curve.

tends further. In the later discussion, however, this differencelot B, as a function ofd (V is fixed), and in Fig. 5, as a
does not play an essential role. . function of V (d is fixed). We find that the condition for the

When the magnetic fiel@=0 (see Fig. 2 for a repeller  «quantization” is summarized as
potential @) smaller than the acceleration voltagé)( all
electrons reach the collector, while f&r>V, all electrons
must be reflected at the repeller. A slight complication, how-
ever, appears because of the finite transparency of the elec- Ve
trode grids of the detector; the peak neRr=0 is due to )
secondary electrons emitted from the shield, which are onlyvhere wczl‘?f/me is the cyclotron frequency and.
retarded by a small potential. Whe&0, on the other hand, — (2eVIm,)~“is the velocity of the electron®onrelativistic
very different results are obtainégee Fig. 3 We observed In the present energy rangeés=1.5 keV); see Table I. The
a number of peaks in the collector current. This result igeft-hand side of Eq(1) represents the gyration phase of the
similar to the previous experiment of Varma-Punithajéll electron, and hence the_condltmjn) implies that t_he elec-
however there are some fundamental differences. trons must complete an integer number of gyrati@slo-

In our experiment, the wavy graphs such as in Figle8 tron motion) around the magnetic-field line during their_
us call this “quantization’} are obtained only for discrete travel between the gun and the Faraday cup. We can rewrite
magnetic fieldsB,=/B; (/=1,2,3...); B, is the mini-  Ed. (1) in the form
mum magnetic field for which the wavy structure appears.

We

—2m/ (/=123...), 1)

The value ofB; depends ol (the distance between the gun 1 wd\?1 )
and the detectprandV (acceleration voltage In Fig. 4, we eV=ome o 2 (r=123...). 2
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FIG. 5. Minimum magnetic field, at which peaks appear as a
FIG. 3. Collector current as a function of retarding potential. function of acceleration voltagé (d= 24 cm). The solid line is the
E=500 eV,d=24 cm, andB;=99.0 G. BxV2 curve.
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TABLE I. Comparison of experiment with relatiq®) for mag-  electrons emitted in a random direction. The return beam

netic fields at which peaks appe&r=500 eV andd=24 cm. focuses at every 2 of the gyration phase, if the return beam

is generated at a concentrated place on the grid, i.e., the
/ B,[C] incident beam focuses on the gfigig. 6a@)]. This condition
Experiment Relatior2) on the_ incident beam is described by E). Under this

condition, the return beam can focus on the front of the elec-
1 19.6 19.7 tron gun when the relatiof8) holds[Fig. 6(b)]. Then, almost

3 59.0 59.1 all of the return beam electrons can enter the hole of the

5 99.0 98.6 electron gun and be reflected by the acceleration potential

7 136 138 [Fig. 6(c)]. The Faraday cup detects the total number of elec-

trons that pass through the two grids. We thus see that the
electrons are multiplied by the incident and return beams

When quantization occurs, another discrete-number lawhen the “resonance condition2) and(3) on the gyration
applies to the retarding potentidl; the current peaks appear phase are satisfied.

if Using this model, we made a computer simulation of the
collector current with changing retarding potential. Here, we
1 wd\?1 o ) assume that the probability that electrons pass through the
edb= §me(ﬁ 2 (n=/,/+1/42,...). (3  gridis i and the energy of secondary electrdggis 5 eV.

The perpendicular energy of incident beam electrinsis
In Fig. 3, the “quantum numbers'n of the peaks are Setto 3 eV.We assume that all secondary electrons emitted
5.6,7 . ... However, the difference between the measurefrom the repeller are accelerated toward the gun, and all of
ment and the relatiori3) becomes largefup to 10% for ~ those that enter the hole of the anode are again reflected and

smaller voltages ®<100 V). We note that the peaks in have enough energy to cross both grids becasbe- Eq

Varma’s experimenfl] satisfy the relation >e®d. The secondary electron yielilis set to 3 in the simu-
lation. The result of the simulation shown in Fig. 7 repro-
1 3w.d\21 duces the quantization of the collector current. However, the
eb= Eme( oy ) ? (4) simulation with a reasonable secondary electron yield gives

only small and narrow peaks, while in the experiment more

. drastic changes were observed. This may be resolved by
rather than Eq‘(‘3). Thg equn’/’qlence of Eqe3) and(Z) sug- studying the secondary emission process more carefully.
gests that the “quantization” is related to the gyration phase

of electrons. In the following section, we will explain this

phenomenon by a simple model. IV. DISCRETE STRUCTURE IN THE ENERGY OF
ELECTRONS

Ill. RETURN BEAM GENERATED BY SECONDARY . . .
ELECTRONS In this section, we introduce a propagator that represents

the transport of the electrons, which is the eigenfunction of a

Secondary electrons play an essential role in the presefidrmal Schralinger operator, and then we incorporate the
model. When beam electrons bombard the repeller grid ofresonance condition” of Sec. Ill into the model as a
the Faraday cup, secondary electrons are produced. Thesgoundary condition” for the propagator. We will show that
electrons are accelerated by the retarding potefitiahd go  the eigenvalues of the Hamiltonian give the energy at which
back to the gun. Neglecting the initial energy of secondaryelectron multiplication occurs. The general idea of describ-
electrons, we obtain a “return beam” of energy. Each ing discrete energies by an eigenvalue problem is similar to
electron gyrates with Larmor radius =mgv, /eB , where  Varma’s original theory2]. However, the physical argument
v, is the velocity perpendicular to the magnetic field. Forof introducing the wave functiofpropagator and the result
incident beam electrons, is generated by the emittance of of the eigenvalue problem is different.
the beam generated at the cathode. But for return beam elec- We formulate the eigenvalue problem by involving the
trons,v, is determined by the initial velocity of secondary Hamilton-Jacobi equation for the action integral. We con-

@ (b) Return Beam
Incident Beam

FIG. 6. Schematics of electron orbits @) an
incident beam(b) a return beam, ancc) a re-

© flected return beam.
Reflected Beam

Secondary Elsctron Reflected by the Gun
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The time-dependent part &F in the form of Eq.(8) gives
the eigenvalues of the parallel kinetic energy:

o
B

2
p
ﬁ\l’.

EV (11

Substituting Eq(10) into Eq. (11), we can get the discrete
energy eigenvalues

(/=123...). (12)

27| 2

/2

E_1 wd\? 1

FIG. 7. Collector current as a function of retarding potential These eigenvalues correspond to the experimental results of

(computer simulation E=500 eV, d=24 cm, andB;j=99.0 G.
Total number of electrons is 3000.

sider a unitary transforrfpropagator ¥ associated with the
action integralW is different from the wave functiop such
that f = p* satisfies the classical Liouville equatiddar-
ma’s formulation [2]). The classical Hamiltonian of a
charged patrticle in a homogeneous magnetic field is

H= ! 24 5
=omP T roc, 5
wherep=mv is the momentum in the direction parallel to
the magnetic field, anw=%mvf/wc is the magnetic mo-
ment (adiabatic invariant The uw, can be regarded as a
potential energy. We define

Y =g'Sn (6)
where S= [ L dt is an action integral for the adiabatic La-
grangianL = (1/2m)p?— pw, [2]. Sincev and w, are con-
stant, Eq.(6) becomes

2

; ﬁt—wct

: @)

\If(t)zexr{i

guantization(2) and (3). The present classical mechanical
system is described by the propagator with finite
(=1mv?/w), which parallels#. The Larmor radiusr,
(=v, /w.) is comparable to the size of the hole on the an-
ode, and hence the finiteness ofis essential to determine
the discrete beam energy.

In Varma's formulation{ 2], the discrete energig42) are
derived by taking the variation qi for the periodic bound-
ary condition, which includes unknown. These energies,
however, conflict the eigenvalues of the Hamiltonian opera-
tor given in his theory. The present theory does not need
such a treatment for the boundary condition and does not
include contradictions in estimates of energies.

V. DISCUSSION

The discrete energy structure in the electron beam system
is explained by the resonance condition that gives rise to
electron multiplication through secondary electron emission
at the electrode. The resonance condition on the gyration
phase can be formulated as a periodic boundary condition on
the formal propagator, and the corresponding eigenvalue of
the energy gives the discrete energy at which electron mul-
tiplication occurs. There are several differences, in both ex-

For S evaluated through the actual motion, we can rewriteP€rimental observation and theoretical formulation, from

Eq. (7), usingt=2z/v, as

8

Varma'’s original work. The present theory and experiment
fill gaps and correct flaws left after this pioneering work.
However, there are still some unresolved problems that re-
quire careful study(i) The difference between the measure-
ment(Fig. 3 and the relatiori3) becomes largeup to 10%

In Eq. (8), the resonance condition for the gyration phasefor smaller voltages® <100 V); (ii) the simulationFig. 7),

(see Sec. I)itranslates into the periodic boundary condition with a reasonable secondary electron yield, gives only small
on W (z,t) over the distancel between the gun and the de- and narrow peaks, while in the experiment more drastic

tector, i.e., changes were observed. These questions may be resolved by
studying the secondary emission process more carefully.
P(0t)=w(d,t), C)
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